Ultrafast cooling of photoexcited electrons in gold nanoparticle-thiolated DNA conjugates involves the dissociation of the gold-thiol bond.

نویسندگان

  • Prashant K Jain
  • Wei Qian
  • Mostafa A El-Sayed
چکیده

Using UV-visible extinction spectroscopy and femtosecond pump-probe transient absorption spectroscopy, we have studied the effect of femtosecond laser heating on gold nanoparticles attached to DNA ligands via thiol groups. It is found that femtosecond pulse excitation of the DNA-modified nanoparticles at a wavelength of 400 nm leads to desorption of the thiolated DNA strands from the nanoparticle surface by the dissociation of the gold-sulfur bond. The laser-initiated gold-sulfur bond-breaking process is a new pathway for nonradiative relaxation of the optically excited electrons within the DNA-modified gold nanoparticles, as manifested by a faster decay rate of the excited electronic distribution at progressively higher laser pulse energies. The experimental results favor a bond dissociation mechanism involving the coupling between the photoexcited electrons of the nanoparticles and the gold-sulfur bond vibrations over one involving the conventional phonon-phonon thermal heating processes. The latter processes have been observed previously by our group to be effective in the selective photothermal destruction of cancer cells bound to anti-epidermal growth factor receptor-conjugated gold nanoparticles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High performance liquid chromatographic analysis of reduction products of a thiolated DNA for immobilization on gold nanoparticles

DNA-based nano-biosensors are emerging scope in the field of biosensors. Many synthetic single stranded functional DNAs have been applied for development of such sensors, recently. Immobilization of DNA oligonucleotides on the surface of gold nanoparticles is a key step in the development of most colorimetric nano-biosensors. The bound DNA is usually thiolated and forms Au-S covalent bond to th...

متن کامل

Engineering Nano-aggregates: β-Cyclodextrin Facilitates the Thiol-Gold Nanoparticle Self-Assembly

The structure and morphology of nonmaterial formed by colloidal synthesis represent a subject of interest as it is a factor deciding the physicochemical properties and biological applications of nanostructures. Among various nanoparticles, gold can develop fractal assembled patterns. Herein, we report a nano-aggregate of a thiol-on-gold self-assembled structure and the influence of β-cyclodextr...

متن کامل

A platinum shell for ultraslow ligand exchange: unmodified DNA adsorbing more stably on platinum than thiol and dithiol on gold.

Due to the ultraslow ligand exchange rate on Pt, non-thiolated DNA is adsorbed on platinum nanoparticles (PtNPs) more stably than thiolated and even dithiolated DNA on AuNPs. Adsorption kinetics, capacity and stability are systematically compared as a function of DNA sequence. The Pt conjugates can tolerate extreme pH, salt, and thiol molecules. Taking advantage of the optical properties of AuN...

متن کامل

Defined DNA/nanoparticle conjugates.

Glutathione monolayer-protected gold clusters were reacted by place exchange with 19- or 20-residue thiolated oligonucleotides. The resulting DNA/nanoparticle conjugates could be separated on the basis of the number of bound oligonucleotides by gel electrophoresis and assembled with one another by DNA-DNA hybridization. This approach overcomes previous limitations of DNA/nanoparticle synthesis ...

متن کامل

Identification of parameters through which surface chemistry determines the lifetimes of hot electrons in small Au nanoparticles.

This paper describes measurements of the dynamics of hot electron cooling in photoexcited gold nanoparticles (Au NPs) with diameters of ∼3.5 nm, and passivated with either a hexadecylamine or hexadecanethiolate adlayer, using ultrafast transient absorption spectroscopy. Fits of these dynamics with temperature-dependent Mie theory reveal that both the electronic heat capacity and the electron-ph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 128 7  شماره 

صفحات  -

تاریخ انتشار 2006